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GENERALIZATION OF THE CLASSICAL RAYLEIGH
EQUATION TO SEVERAL NON-NEWTONIAN LIQUIDS

V. S. Novikov ) UDC 532,528:532.529.6

Equations are derived that describe the change in the radius of a spherical gas inclusion in the
Bingham, Ellis, Reiner—Rivlin, Shul'man, Kapur—Gupta,and Oswald de Vielle non-Newtonian
liquids, as well as in a power-law liquid.

The Rayleigh equation for highly viscous liquids with a finite relaxation time of elastic strains was ob-
tained in [1]. In the present paper this equation is extended to non-Newtonian liquids, for which the rheologi-
cal equations of state known to the present author are being extended.

In a spherical coordinate system the equation of motion, including strain and the continuity equation, are

dv, du doP or, 2
T v, —T_ ) — 0 o T 1
p(6t+r6r) 6r+6r_rr w @
1 d
—— () =0, @)
rz dr )

if the bubble center is considered to be testing in the liquid. Integrating (2) with respect to r from the bubble
radius R to infinity, we obtain the radial velocity of motion of the liquid v, = R(R/r)2, expressed in terms of
the drift velocity of the surface R. Here and elsewhere, the dot over R denotes differentiation with respect
to time. Substituting vy into Eq. (1) and integrating it with respect to r in the limits R — «, we obtain

=3

b 3 ' TI’T
o(RR + - R)=Pr —Pu+t 7l — %l g+ 2 [——r— dr, @)
R
where PR and P, are the pressures in the liquid an the bubble surface and at infinity, and p is the liquid den-
sity. As P, one can take the external static pressure in the liquid. The relation between PR and the static
pressure in the bubble P, is established by the Thomson relation
20 4 0y o, \|
Pp=Pj—— — — L. —-r ,
R R 3 o ( or r ) |r=R
where o is the surface tension of the liquid. As p, for non-Newtonian liquids, one can take the slope of the
stream curve for small shear stresses (see [2]). The relation between the components of the strain tensor
Tij and the components of the velocity deformation tensor éi]’ i.e., the rheological equation of state, depends
on the type of specific non-Newtonian liquid.

4)
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A Viscoplastic Bingham Liquid, For this liquid

Ty : 1/ 2
Tyj= — | b~ | Gij for ?(Tiﬁﬁ =T, (5)
?elmeml
. 1 [ dy; du; \ I
LY . i) =0 for — (T,7;) <73,
€= (Gx, + o, ) or — (T T5) <5 (6)

where 7 is the yield of the liquid. From here on summation is performed on repeated indices. Substituting
(5) into (3), we obtain after some calculations the equation

20 2 R H

N S
D(RR+-§~R2>=P0—PH~—~R—~—3—-H0*RT V3 T ln —- (M

To remove the divergence of the integral in (3), the upper limit of integration was replaced by the finite value
H »>R. AsH, one can choose the width of the liquid layer,

A Power-Law Liquid.

n~—1

k‘ 1 . . T .
= ,'—2’_ €mi Cim €in (8)
where k and n are constants for a definite velocity interval, and
n—1 .
.. 3 5 ) B 2.-___ R = 2 ( R n 9
An Ellis Liquid,
a—1
1 . . 7N .
Ty = (P—rH‘le erm emy )eii’ (10)

where 4; and i, are the ordinary viscosity coefficients of shear flow and of transverse viscosity, and are con-
stant for a certain velocity interval

P (Rﬁ+_g_1'22) = Py—P.— %_139 ui—%hz.si?(%*l) My (%)m- )
The equality pg = ¢y was used in deriving (11).
A Reiner—Rivlin Liquid.
Tyy= BT &+ 13 Cim my- {12)

In the general case u’f = u‘i‘(Iz, I), where I, = 2 2 (éij)2 is a quadratic invariant tensor of velocity deforma-
]

tions, and I; = deté, If W = const, then
= 3 20 R 2 R R\’

The Rayleigh equation for this liquid is easily obtained also in the more general case pL* = /.4* I, I 1f the ex-
plicit dependence of the functional dependence of u* on I, and I; is known.

A Generalized Viscoplastic Shul'man Liquid {3].

1
e 1

n BRI "
Tij=2 (TO T " )Am € A= (2e;6;) ", (14)
A m
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where A is the intensity of velocity deformation

. 2 : 8
p(RR‘f‘TRz):Po_Pw——E—‘H"o _}1%“*‘ (4—? “ )X

R n—1
n—1 (15)
P EELRYT (8 m) g e SRS
x@2V3) Tg (_TQ_) + (4-—*3—7;)(21/3 ) ml’-m(?r)m-
A Nonlinear-Viscous Liquid [4].
2 A
Gy =¥ () Buy, By =22, 1,=4(a”f) (=) (t6)
or or r

The Rayleigh equation is easily obtained by expression (3), having assigned an explicit form of the functional
dependence ¥(I).

A Kapur—Gupta Liquid.

Ty = Wi+ Py (e + M )+ s am
where 4j = const, Confining ourselves to the third term in (17), we obtain the equation

53 g 2 R 2 R 8 RV, 5 (R
P(RR—!—TRz)=P0_Pn——lg‘—4l‘*o“§‘+*3—lh‘}? ——3"112(‘13*) -l-TPa(ﬁ‘) . (18)
Here one can put g = 44.
An Oswald de Vielle Liquid.
1
= oK1 0 @6 7 (19)
or
L3 2, R ol R 20
p(RR+—§—R2)—Po—Pm——R g —4EV3) K( R)',. 20)

The equations obtained can be used to determine the rheological constants in the non-Newtonian liquids
considered, as well as in studying boiling processes on the basis of the mathematical model of growth of a
gas bubble, suggested in [5].
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